Polymer nanocomposites (PNCs) are significant for modern and future applications owing to their multifunctionality promoted by morphology and tailored interfaces between the constituents. However, ‘forward’ engineered polymer (host) composites with smaller size nanoparticles (guest) providing desired properties remains challenging as they depend upon nanoparticles aggregation, size, shape, and loading (volume or weight) fraction. This study strategically designs and develops PNCs comprising thermoplastic poly (2-vinylpyridine) (P2VP) polymer matrix impregnated with spherical polyhedral oligomeric silsesquioxane (N-POSS) nanoparticles (diameter ∼2–5 nm) and anisotropic planar nitrogenated graphene nanoribbons (GNR, strip width ∼5–10 nm) commensurate with polymer chain radius of gyration, Rg, (or segment length ∼1.5 nm) and comparable energy scales of electrostatic interaction and attractive hydrogen bonding. We investigated static and dynamic structure and thermophysical properties to correlate with interfacial regions and the results are compared with larger graphene oxide (GO, lateral dimension ∼100–200 nm) nanosheets and silica (SiO2, ∼25–50 nm) particles. While electron microscopy revealed nanoparticle distribution, the lattice bonding, conjugation length, and mechanical properties are determined from micro-Raman spectroscopy and atomic force microscopy, respectively. The differential scanning calorimetry provided a measure of glass transition temperature, Tg, with positive shift of ∼10–18 °C with nanoparticles loading indicating strength of structural relaxation/chain rigidity behavior and thermogravimetric analysis displayed increased thermal stability and conductivity (decreased interfacial resistance). We also measured temperature dependent dc electrical conductivity and dielectric relaxation spectroscopy gaining insights into percolation and dynamic interfacial layer. This study signified understanding of interactions and interfacial regions, key element to demystify the microscopic structure-property relationships.
Read full abstract