Geometric confinement plays an important role in the generation of interesting microstructures on account of structural frustration and confinement-induced entropy loss. In the present study, self-consistent field calculations have been performed to examine the self-assembly behavior of a mixture of diblock copolymers and polymer grafted nanoparticles within a spherical confinement. The analysis is aimed at obtaining the equilibrium distribution of nanoparticles with a high degree of order. The ordered mesophases of diblock copolymers provide useful templates to achieve ordering of nanoparticles in a selective domain. Self-assembly of nanoparticles within frustrated diblock copolymers is found to be very different from the bulk. A rich variety of equilibrium morphologies are observed depending on the degree of confinement and the extent of particle loading. In addition, the role of particle size and selectivity along with the length and the number of polymer chains grafted onto the surface of nanoparticles are analyzed to understand the self-assembly behavior. The specific interest is to obtain the chiral structures out of achiral block copolymers subjected to spherical confinement. The realization of various captivating microstructures, such as chiral ordering of nanoparticles, is highly essential to produce advanced nanomaterials with superior physical properties.
Read full abstract