Abstract

The observation of complex, Frank-Kasper (FK) particle packings in diblock polymer melts has until recently been limited to low molecular weight, conformationally asymmetric polymers. We report temperature-dependent small-angle X-ray scattering (SAXS) studies of blends of a sphere-forming poly(styrene-block-1,4-butadiene) (SB) diblock polymer (Mn = 33.3 kg/mol, Đ = Mw/Mn = 1.08, fB = 0.18) with two different poly(1,4-butadiene) (B) homopolymer additives. When the B additive Mn is the same as that of the diblock core-forming B segment, these blends remarkably form tetrahedrally close-packed FK σ and Laves C14 and C15 phases with increasing B content. However, binary blends in which the B additive Mn is 60% of that of the diblock B segment form only the canonical body-centered cubic (BCC) particle packing and hexagonally-packed cylinders (HEXc). The observed phase behavior is rationalized in terms of "wet" and "dry" brush blending, whereby higher B Mn drives stronger localization of the homopolymer in the particle cores while preserving the interfacial area per SB diblock chain. The consequent packing constraints in these blends destabilize the BCC packing, and FK phases emerge as optimal minimal surface solutions to filling space at constant density while maximizing local particle sphericity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.