The telescope Mini-EUSO has been observing, since 2019, the Earth in the ultraviolet band (290–430 nm) through a nadir-facing UV-transparent window in the Russian Zvezda module of the International Space Station. The instrument has a square field of view of 44°, a spatial resolution on the Earth surface of 6.3 km and a temporal sampling rate of 2.5 microseconds. The optics is composed of two 25 cm diameter Fresnel lenses and a focal surface consisting of 36 multi-anode photomultiplier tubes, 64 pixels each, for a total of 2304 channels. In addition to the main camera, Mini-EUSO also contains two cameras in the near infrared and visible ranges, a series of silicon photomultiplier sensors and UV sensors to manage night-day transitions. Its triggering and on-board processing allow the telescope to detect UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few microseconds up to tens of milliseconds. This makes it possible to investigate a wide variety of events: the study of atmospheric phenomena (lightning, transient luminous events (TLEs) such as ELVES and sprites), meteors and meteoroids; the search for nuclearites and strange quark matter; and the observation of artificial satellites and space debris. Mini-EUSO is also potentially capable of observing extensive air showers generated by ultra-high-energy cosmic rays with an energy above 1021 eV and can detect artificial flashing events and showers generated with lasers from the ground. The instrument was integrated and qualified in 2019 in Rome, with additional tests in Moscow and final, pre-launch tests in Baikonur. Operations involve periodic installation in the Zvezda module of the station with observations during the crew night time, with periodic downlink of data samples, and the full dataset being sent to the ground via pouches containing the data disks. In this work, the mission status and the main scientific results obtained so far are presented, in light of future observations with similar instruments.
Read full abstract