Abstract

The primary objective of this study was to develop a fiber-optic hybrid day-lighting system for mobile application such as military shelters in order to cut energy use and the use of fossil fuels. The scope included the design, development, and testing of a hybrid lighting system that is capable of producing about 16,000 lm output with design challenges including light-weight, compactness, and optics that can tolerate a high tracking misalignment. The designed system is comprised of two subsystems: the solar collector and the solar hybrid lighting fixture (SHLF). The solar collector, consists of a housing, a structural stand (tripod), a dual axis tracking system, Fresnel lenses, secondary optics, and fiber-optic cables. The collector is a telescoping aluminum box that holds eight 10-in diameter Fresnel lenses, which focus sunlight onto eight secondary optics and deliver uniform light to the fiber-optic cables. The secondary optics have filters to block UV/IR. The optics has been designed to have a high half-acceptance angle of 1.75 deg and can accommodate a tracking accuracy of 1.50 deg or better. This novel SHLF consists of two components: a solar fiber-optic system and a light emitting diode (LED) system. The fiber-optic cable is coupled to an acrylic light diffusing rod that delivers the sunlight into the room. During sunny periods, the solar fiber-optic lighting could provide full illumination level. In order to keep the same level of lighting during cloudy periods, the LED portion of the light fixture can supplement the output of the SHLF. A compact, light-weight prototype system was built and tested. The results showed that the system's output per lens for the 20 ft cable was about 1750±50 lm at a global solar illuminance of 115,000 lx. The total system was capable of delivering 14,000 lm of sunlight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call