Abstract

This paper discusses a Fiber-Optic Hybrid Day-Lighting system that can cut energy consumed by buildings for lighting significantly. This system is designed for mobile applications such as military shelters. The system is comprised of two primary components: the solar collector and the Solar Hybrid Lighting Fixture. The first component, the solar collector, consists of a housing, structural stand, a dual axis tracking system, Fresnel Lenses, secondary optics, and fiber-optic cables. The collector is integrated into a dual-axis tracker, which is then mounted on a tripod. The tripod can be staked into the ground and weighed down to protect the system from any wind loading and the collector height can be adjusted so that there is no shading of the collector by nearby structures. The collector with an aluminum housing holds eight 10-inch diameter Fresnel Lenses that focus sunlight onto eight secondary optics based on TIR (total internal reflection) which filter UV/IR and deliver uniform light to the fiber-optic cables. The secondary optic is coupled to the fiber-optic cable with index matching gel so that Fresnel reflection losses are minimized. The solar collector tracks the sun’s movement through the day with a dual-axis tracker (azimuth/tilt), ensuring the light is concentrated into the fiber-optic cables. The optics has been designed to have a high half-acceptance of 1.75° and can accommodate a tracking accuracy of 1.50° or better. The opposite end of the fiber-optic cable attaches to the second part of the Day-Lighting system, the Solar Hybrid Light Fixture (SHLF). The SHLF comprises of two lighting systems: 1) a solar fiber-optic system and 2) an LED system. The fiber-optic cable is coupled to an acrylic light diffusing rod that evenly delivers the light into the room. During sunny periods, depending on the length of the cable, solar fiber-optic lighting could provide full illumination of the space. In order to keep lighting uniform even during fluctuations of the light output from the sun during cloudy periods, the LED portion of the light will allow for constant lighting at a lower power consumption. The LED lighting has dimming capabilities due to a photosensor that regulates the light output of the LEDs based on how much solar light is delivered by the fiber-optic cables. On a typical sunny day with an overall concentration factor of ∼400 from the Fresnel Lens system to the optical fiber, it is possible to generate an output of 2,000 lumens with a 20-foot cable, with each fiber-optic cable experiencing a 1% loss of light per foot of cable. The LED portion of the hybrid light fixture produces about 1,800 lumens as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call