Dialogue systems have attracted growing research interests due to its widespread applications in various domains. However, most research work focus on sentence-level intent recognition to interpret user utterances in dialogue systems, while the comprehension of the whole documents has not attracted sufficient attention. In this paper, we propose DialGNN, a heterogeneous graph neural network framework tailored for the problem of dialogue classification which takes the entire dialogue as input. Specifically, a heterogeneous graph is constructed with nodes in different levels of semantic granularity. The graph framework allows flexible integration of various pre-trained language representation models, such as BERT and its variants, which endows DialGNN with powerful text representational capabilities. DialGNN outperforms on CM and ECS datasets, which demonstrates robustness and the effectiveness. Specifically, our model achieves a notable enhancement in performance, optimizing the classification of document-level dialogue text. The implementation of DialGNN and related data are shared through https://github.com/821code/DialGNN.
Read full abstract