Abstract
Generative Large Language Models (LLMs) have achieved significant success in various natural language processing tasks, including Question-Answering (QA) and dialogue systems. However, most models are trained on English data and lack strong generalization in providing answers in Chinese. This limitation is especially evident in specialized domains like traditional Chinese medical QA, where performance suffers due to the absence of fine-tuning and high-quality datasets. To address this, we introduce MedChatZH, a dialogue model optimized for Chinese medical QA based on transformer decoder with LLaMA architecture. Continued pre-training on a curated corpus of Chinese medical books is followed by fine-tuning with a carefully selected medical instruction dataset, resulting in MedChatZH outperforming several Chinese dialogue baselines on a real-world medical dialogue dataset. Our model, code, and dataset are publicly available on GitHub (https://github.com/tyang816/MedChatZH) to encourage further research in traditional Chinese medicine and LLMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.