MicroRNA (miR)-210 function in endothelial cells and its role in diabetes-associated endothelial dysfunction are not fully understood. We aimed to characterize the miR-210 function in endothelial cells and study its therapeutic potential in diabetes. Two different diabetic mouse models (db/db and Western diet-induced), miR-210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. miR-210 levels were lower in aortas isolated from db/db than in control mice. Endothelium-dependent relaxation (EDR) was impaired in aortas from miR-210 knockout mice, and this was restored by inhibiting miR-210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol-3-phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR-210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR-210. However, plasma miR-210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR-210 transgenic mice and pharmacological overexpression using miR-210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR-210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR-210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. This study unravels the mechanisms by which down-regulated miR-210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR-210 serves as a novel therapeutic target.
Read full abstract