Abstract

A glucose-responsive insulin delivery system that sustains blood glucose equilibrium for an extended duration can address the low therapeutic window of insulin in diabetes treatment. Herein, insulin is loaded in a water-in-oil-in-water (W1/O/W2) gelled multiple emulsion using poly (4-vinylphenylboronic acid) (PVPBA) homopolymer as an effective emulsifier. The gelled multiple emulsion exhibits a high encapsulation efficiency (99%), enhanced stability and remarkable shear-thinning behavior, making it easy to inject. Under hyperglycemic conditions, the gelled emulsion system instantly binds to glucose molecules and reduces the hydrogen bonds of the PVPBA homopolymer, resulting in insulin release. In a streptozotocin-induced type 1 diabetic mouse model, a single subcutaneous injection of the gelled emulsion rapidly responds to high blood glucose concentration (BGC)and release insulin in a glucose dependent manner, thus prolonging the antihyperglycemic effect compared with free insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.