The objectives of this study were to assess: 1) differences in the metabolic status, systemic inflammation, daily milk yield, and daily rumination time between Holstein dairy cows with different vaginal discharge scores (VDS) in the first 7±3 DIM, and 2) effects of intrauterine dextrose infusion on metabolic status, systemic inflammation, daily milk yield and daily rumination time in dairy cows with VDS4 and VDS5. Cows (n=641) from a farm located in central Pennsylvania were screened at 7±3 DIM (study d 0) to assess vaginal discharge scores. Vaginal discharge was scored using a five-point scale (i.e., 1- clear fluid, 2- <50% white purulent fluid, 3- >50% white purulent fluid, 4- red-brownish fluid without fetid smell, and 5- fetid red-brownish watery fluid). Cows with VDS4 and VDS5 were blocked by parity and randomly assigned to one of two treatment groups: 1) CONV (VDS4 n=15; VDS5 n= 23): two injections of ceftiofur (per label; 6.6 mg/Kg) 72 h apart; and 2) DEX (VDS4 n=15; VDS5 n=22): three intrauterine infusions of a 50% dextrose solution (1 L/cow) every 24 h. Cows that presented a VDS 1, 2, and 3 were categorized as normal vaginal discharge animals (NOMVDS; n=35) and were randomly selected and matched by parity to CONV and DEX cows. Daily milk yield and rumination time for the first 150 DIM were collected from on-farm computer records. Blood samples were collected to assess haptoglobin (HP) and β-hydroxybutyrate (BHB) concentrations at study d 0, d 7, and d 14 relative to enrollment. Subclinical ketosis was defined as having a BHB concentration >1.2 mmol/dL at any of the sampling points. The data were analyzed using the MIXED and GLIMMIX procedures of SAS as a randomized complete block design. When comparing cows with different VDS (i.e., NOMVDS, VDS4, VDS5) separately, cows with VDS5 had the highest concentration of HP at enrollment compared to cows with VDS4 and NOMVDS; however, cows with VDS4 had higher concentrations of HP compared to cows with NOMVDS. Cows with VDS4 or VDS5 had a higher incidence of subclinical ketosis compared to cows with NOMVDS (p=0.005; VDS4= 62.08±9.16%; VDS5=74.44±6.74%; NOMVDS=34.36±8.53%). Similarly, daily milk yield (p<.0001; VDS4=30.17±1.32 kg/d; VDS5=27.40±1.27 kg/d; NOMVDS=35.14±1.35 kg/d) and daily rumination time (p=0.001; VDS4=490.77±19.44 min; VDS5=465±16.67 min; NOMVDS=558.29±18.80 min) was lower for cows with VDS4 and VDS5 compared to cows with NOMVDS at 7±3 days in milk. When analyzing HP concentration between treatment groups in cows with VDS4 (p=0.70), VDS5 (p=0.25), or VDS4 and VDS5 combined (p=0.31), there was no difference in HP concentration by study d 14 between treatment groups. Interestingly, when only cows with VDS4 were considered for treatment, both treatments, DEX and CONV, increased the daily milk yield to the levels of NOMVDS cows by 14 days in milk. On the other hand, when only cows with VDS5 were considered for treatment, cows treated with DEX produced, on average, 4.48 kg/d less milk in the first 150 days in milk compared to cows treated with CONV or cows that had NOMVDS. Similarly, when cows with either VDS4 or VDS5 were considered for treatment, DEX treatment also impaired milk yield. These results suggest that cows with either VDS 4 or 5 have an altered inflammatory status, and decreased milk yield and rumination compared to cows with NOMVDS. Furthermore, DEX treatment may have similar effects on daily milk yield and metabolic status compared to CONV in cows with VDS4, while DEX is not recommended for cows with VDS5.
Read full abstract