Abstract
IntroductionLipopolysaccharide (Lps) is an essential component responsible for the virulence of gram-negative bacteria. Lps can cause damage to many organs, including the heart, kidneys, and lungs. Dexpanthenol (Dex) is an agent that exhibits anti-oxidative and anti-inflammatory effects and stimulates epithelialization. In this study, we aimed to investigate the effects of Dex on Lps-induced cardiovascular toxicity. MethodsRats were divided into four groups: control, Lps (5 mg/kg, intraperitoneal), Dex (500 mg/kg, intraperitoneal), and Lps + Dex. The control group received saline intraperitoneally (i.p.) once daily for three days. The Lps group received saline i.p. once daily for three days and a single dose of Lps i.p. was administered on the third day. The Dex group received Dex i.p. once daily for three days and saline on the third day. The Lps + Dex group received Dex i.p. once daily for three days and a single dose of Lps i.p. on the third day. Heart and aortic tissues were taken for biochemical, histopathological, immunohistochemical, and genetic analysis. ResultsLps injection caused histopathological changes in both heart and aortic tissues and significantly increased total oxidant status and oxidative stress index levels. Interleukin-6, and Tumor necrosis factor-α mRNA expressions were significantly altered in heart and aorta, likely do to the anti-inflammatory and antioxidative effects of Dex. Furthermore, Dex affected Caspase-3 and Hypoxia-inducible factor 1-α staining patterns. ConclusionsOur results show that Dex treatment has a protective effect on Lps-induced cardiac and endothelial damage in rats by reducing inflammation, oxidative stress, and apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.