Quantum key distribution technology refers to a method to share keys between communication parties by transmitting quantum states in public channels. Although unconditional security is the main advantage of QKD, its application prospect has been controversial in practical implementation due to the potential security risks caused by device imperfections. Fortunately, the measurement device independent quantum key distribution protocol removes the vulnerability of all measurement devices and greatly improves the practical security of the quantum key distribution system. However, the security key rate of this protocol is still lower than that of other quantum key distribution protocols. At present, using high-dimensional coding to improve the performance of the quantum key distribution protocol has been proved in theory and experiment, and recently, it has been proposed to use high-dimensional coding to improve the performance of measurement device independent quantum key distribution protocol, but because these protocols have higher requirements for the laboratory equipment performance, that the high-dimensional encoding is applied to the aforementioned protocol still has many difficulties in practical application. In this paper, we propose a hybrid coding based on the polarization and two-degree phase of freedom measurement device independent quantum key distribution protocol. In the first place in an ideal case, we introduce in detail the protocol decoding rules, then introduce 4intensity decoy-state method to solve the problem of actual light source multiphoton, in addition we also consider the statistical fluctuation effect under the condition of limited code length, channel loss, actual dark count of single photon detector and detection efficiency problem. Finally, the optimal security code rate and its corresponding optimal parameters are obtained by full parameter optimization method, And the numerical simulation results show that the security key rate of this protocol is increased by 50% by considering the practical implementation. We point out that compared with other measurement device independent quantum key distribution protocol, the proposed agreement requires local users only to have a phase encoding device and a polarization coding device, and 4 single photon detectors for detecting side. The proposed device can use the existing experimental condition, beyond that, compared with the time encoding based high dimensional measurement device independent quantum key distribution protocol, the proposed protocol possesses the advantage that the rate of system security key can be increased without increasing the repetition frequency of users. It is proved that this protocol has great application value in the future field of quantum communication, especially, in the field of quantum network communication.
Read full abstract