Abstract
Remote distribution of secret keys is a challenging task in quantum cryptography. A significant step in this direction is the measurement-device independence quantum key distribution (MDI-QKD). For two remote (or independent) parties Alice and Bob who initially no share secret information, the MDI-QKD enables them to share a secret key by the measurement of an untrusted relay. Unfortunately, the MDI-QKD yields the assumption that the devices of both Alice and Bob have to be trusted. Here, we show that QKD between two independent parties can also be realized even if the device of either Alice or Bob is untrusted. We tackle the problem by resorting to the recently developed one-sided device-independent QKD protocol. We derive conditions on the extracted secret key to be unconditionally secure against arbitary attacks in the limit of asymptotic keys. In the presence of Gaussian states and measurements, we theoretically demonstrate our scheme is feasible, which could be an attractive candidate for long distance secret communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.