Alzheimer's disease (AD), a neurological disorder, is a major public health concern and the most common form of dementia. Its typical symptoms include memory loss, confusion, changes in personality, and cognitive impairment, which result in patients gradually losing independence. Over the last decades, some studies have focused on searching for effective biomarkers as early diagnostic indicators of AD. Amyloid-β (Aβ) peptides have been consolidated as reliable AD biomarkers and have been incorporated into modern diagnostic research criteria. However, quantitative analysis of Aβ peptides in biological samples remains a challenge because both the sample and the physical-chemical properties of these peptides are complex. During clinical routine, Aβ peptides are measured in the cerebrospinal fluid by immunoassays, but the availability of a specific antibody is critical-in some cases, an antibody may not exist, or its specificity may be inadequate, leading to low sensitivity and false results. HPLC-MS/MS has been reported as a sensitive and selective method for determining different fragments of Aβ peptides in biological samples simultaneously. Developments in sample preparation techniques (preconcentration platforms) such as immunoprecipitation, 96-well plate SPME,onlineSPME, andfiber-in-tubeSPME have enabled not only effective enrichment of Aβ peptides present at trace levels in biological samples, but also efficient exclusion of interferents from the sample matrix (sample cleanup). This high extraction efficiency has provided MS platforms with higher sensitivity. Recently, methods affording LLOQ values as low as 5pgmL-1 have been reported. Such low LLOQ values are adequate for quantifying Aβ peptides in complex matrixes including cerebrospinal fluid (CSF) and plasma samples. This review summarizes the advances in mass spectrometry (MS)-based methods for quantifying Aβ peptides and covers the period 1992-2022. Important considerations regarding the development of the HPLC-MS/MS method such as the sample preparation step, optimization of the HPLC-MS/MS parameters, and matrix effects are described. Clinical applications, difficulties related to analysis of plasma samples, and future trends of these MS/MS-based methods are also discussed.
Read full abstract