Retinopathy of Prematurity (ROP) is a major cause of blindness in premature infants. This study aimed to evaluate the association between inflammatory markers and ROP development in extremely premature and very premature neonates and identify potential inflammatory biomarkers for ROP risk prediction. This prospective study was conducted from January 2021 to January 2023 in two clinical hospitals associated with the "Victor Babes" University of Medicine and Pharmacy Timisoara. The study population comprised neonates with a gestational age of less than 32 weeks. Various inflammatory markers, including total white blood cell count, polymorphonuclear leukocytes, C-reactive protein, interleukin-6, and lactate dehydrogenase, were analyzed from blood samples collected at birth and three days postnatally. ROP was diagnosed and classified following the International Classification of Retinopathy of Prematurity. The study included 48 neonates, 12 Extremely Premature Infants (EPI), and 36 Very Premature Infants (VPI). The EPI group had significantly higher mean interleukin-6 and lactate dehydrogenase levels at birth and three days postnatally than the VPI group. C-reactive protein levels at three days were significantly higher in the VPI group. Umbilical cord inflammation and ROP severity were found to have a statistically significant positive correlation. Half of the EPIs had moderate to severe ROP, significantly more than in the VPI group. The duration of oxygen supplementation, mechanical ventilation, Continuous Positive Airway Pressure (CPAP), gestational age less than 28 weeks, and umbilical cord inflammation at or above stage 3 were significant risk factors for developing ROP stage 2 or above. Elevated CRP and IL-6 were also significantly associated with an increased risk of developing ROP stage 2 or above, highlighting their potential as biomarkers for ROP risk prediction. This study suggests a significant association between inflammatory markers and ROP development in extremely premature and very premature neonates. These findings could contribute to the identification of potential inflammatory biomarkers for ROP risk prediction, improving early diagnosis and intervention strategies for this condition.