Marigold (Tagetes erecta) has a capitulum with two floret types: sterile ray florets and fertile disc florets. This distinction makes marigold a valuable model for studying floral organ development in Asteraceae, where MADS-box transcription factors play crucial roles. Here, 65 MADS-box genes were identified in the marigold genome, distributed across all 12 chromosomes. These genes were classified into type I (13 genes) and type II (52 genes) according to phylogenetic relationships. The gene structure of type I was simpler than that of type II, with fewer conserved motifs. Type I was further divided into three subclasses, Mα (8 genes), Mβ (2 genes), and Mγ (3 genes), while type II was divided into two groups: MIKCC (50 genes) and MIKC* (2 genes), with MIKCC comprising 13 subfamilies. Many type II MADS-box genes had evolutionarily conserved functions in marigold. Expression analysis of type II genes across different organs revealed organ-specific patterns, identifying 34 genes related to flower organ development. Given the distinct characteristics of the two floret types, four genes were specifically expressed only in the petals of one floret type, while twenty genes were expressed in the stamens of disc florets. These genes might have been related to the formation of different floret types. Our research provided a comprehensive and systematic analysis of the marigold MADS-box genes and laid the foundation for further studies on the roles of MADS-box genes in floral organ development in Asteraceae.