Abstract

Hibiscus syriacus belongs to the Malvaceae family, and is a plant with medicinal, edible, and greening values. MADS-box transcription factor is a large family of regulatory factors involved in a variety of biological processes in plants. Here, we performed a genome-wide characterization of MADS-box proteins in H. syriacus and investigated gene structure, phylogenetics, cis-acting elements, three-dimensional structure, gene expression, and protein interaction to identify candidate MADS-box genes that mediate petal developmental regulation in H. syriacus. A total of 163 candidate MADS-box genes were found and classified into type I (Mα, Mβ, and Mγ) and type II (MIKC and Mδ). Analysis of cis-acting elements in the promoter region showed that most elements were correlated to plant hormones. The analysis of nine HsMADS expressions of two different H. syriacus cultivars showed that they were differentially expressed between two type flowers. The analysis of protein interaction networks also indicated that MADS proteins played a crucial role in floral organ identification, inflorescence and fruit development, and flowering time. This research is the first to analyze the MADS-box family of H. syriacus and provides an important reference for further study of the biological functions of the MADS-box, especially in flower organ development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call