This research article examines the reaction-diffusion process in an immobilized enzyme batch reactor. The model incorporates strongly non-linear factors that are associated with standard Michaelis-Menten kinetics. The non-linear reaction-diffusion equations for substrate and product concentrations have been approximated analytically. Employing two different semi-analytical methods, Akbari-Ganji's method (AGM) and the modified Adomian decomposition method (MADM), to compute the dimensionless steady-state solutions to the system of non-linear differential equations for all values of reaction parameters. In addition, the dynamics of the mean integrated effectiveness factor of penicillin acylase in porous spherical particles have been presented for the determination of the local effectiveness factor. In order to gauge the potency of our proposed solution, we compare two semi-analytical results with a numerical result that are in good agreement across the whole concentration range. The proposed formulation aims to simulate the dynamic performance of the system utilizing the parameters and would enhance the determination of the optimum particle size for enzyme catalysts.
Read full abstract