Abstract
Size distribution is a crucial characteristic of microplastics (MPs). A typical method for measuring this property is wet laser diffraction. However, when measuring size distributions of MPs, despite it being a poor dispersant for many MPs, water is commonly selected, potentially limiting the reliability of reported measurements. To evaluate dispersant suitability, different aqueous concentrations of ethanol (0, 10, 20, 30, 40, 50, 75, 100 wt%) and aqueous solutions of 0.001 wt% Triton X-100 and a mixture comprising 10 wt% sodium pyrophosphate and 10 wt% methanol were used as dispersants in a laser granulometer (Mastersizer 2000) to determine particle size distributions (PSDs) of granular polyethylene MP35, MP125 and MP500 particles (nominally <35, <125 and, < 500 μm in size). The reliability of the PSDs depended on the dispersant used and size of primary MPs. With increasing ethanol concentrations, PSD curves of MP35 particles shifted from multi-modal to mono-modal distributions. The measured size distribution reduced from 1588.7 to 4.5 μm in water to 39.9 to 0.1 μm in 100 wt% ethanol. Generally, as ethanol concentration increased, uncertainty associated with the PSD parameters decreased. Although Triton X-100 and the mixed solution also showed better dispersion than water, measured particle sizes and coefficient of variation (COV, %) were notably larger than those for 100 wt% ethanol. Similar trends were observed for larger-sized MP125 and MP500 particles, but differences in PSD curves, PSD parameters, and COV (%) among dispersants were less pronounced. In all dispersants, the volume weighted mean diameters (VWMD) in 100 wt% ethanol (MP35: 14.1 μm, MP125: 102.5 μm, MP500: 300.0 μm) were smallest and close to diameters determined from microscope observations (MP35: 14.6 μm, MP125: 109.0 μm, MP500: 310.6 μm). Therefore, for accurate determinations of the PSDs of MP by wet laser diffraction, ethanol rather than water should be used as the dispersant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.