The use of Coloured powder (Holi powder orcolour dust) has been largely used in India for their festivities. Due to their popularity is extensive around the world since the popularity of the parties and events with this kind of show is increasing considerably. Despite the fact of its extensive use, its highly flammable nature is poorly known. Currently, some serious accidents related to the Coloured powder have been registered. Coloured powder organic nature implies a significant increase in the probability to form an explosive atmosphere as their use includes dust dispersion, leading to explosion hazards as has been previously reported. Moreover, it is important to take into account the effects on the flammability of the additives and the colorings existing in the Coloured powder as they might increase the hazard. To properly understand Coloured powder potential for producing an explosive atmosphere, and the attached risk of dust explosions, several samples were tested. Coloured powder from 6 different manufacturers were gathered. Each manufacturer provided several colours (between 5 and 8) which were characterized through moisture content and particle size determination. Once each sample was characterized, screening tests were performed on each sample determining whether ignition was produced or not. Those screening tests were carried out under certain conditions using the equipment for minimum ignition temperature on cloud determination (0.5 g set at 500 °C and 0.5 bar), and minimum ignition energy determination (using 100 and 300 mJ energies and 900 and 1200 mg). From those test results, important differences were seen between manufacturers, but most important, differences between colours of the same manufacturer were observed. The screening tests allowed the selection of 11 samples that were fully characterized through thermogravimetric analysis, maximum pressure of explosion, Kst, minimum ignition temperature on cloud, and minimum ignition energy. When carrying out thermogravimetric analysis, some samples increased mass at temperatures close to 300 °C and unexpectedly absorbed energy, followed by the expected combustion reaction at higher temperatures. From the obtained results it was noticed that the colour powders that included talcum in its composition did not produce explosion. Flammability and explosion tests, again, showed important differences between manufacturers and colours, and so it was possible to determine the relative flash fire and explosion risks of the various tested powders.
Read full abstract