A novel base-mismatched oligonucleotide assay method based on label-free electrochemical biosensor was developed, in which the L-cysteine (Cys)-dihydroartemisinin (DHA) complex was used as a new electroactive indicator. In DNA sensor, Cys-DHA complex was initially formed on electrode surface by cathodic scanning, and target oligonucleotide was conjugated with Cys-terminated DHA indicator through electrostatic interaction under optimal pH. The subsequent sequence assay was responsive to hybridization recognition, which target oligonucleotide was captured by the surface-anchored DNA/Cys-DHA probe. The electrochemical signals of biosensor before and after hybridization were compared basing the measurements of semi-derivative linear scan voltammetry (SDLSV) and electrochemical impedance spectroscopy (EIS). On the basis of signal amplification of electroactive indicator and specific recognition of DNA probe, five target oligonucleotides with different mismatched bases were assayed, and a detection limit reached 0.3 nM. Furthermore, atomic force microscopy (AFM) was used to visually characterize specific recognition spots of biosensor at nanoscale. This study demonstrated a new electroactive molecule-based, biomolecule-involved electroactive indicator and its application in recognition and detection of complementary and base-mismatched oligonucleotide.
Read full abstract