This research aims to investigate a fault detection method applicable to the stator part of the Brush-Less DC motor (BLDC). Indeed, it is a concern to make sure the motor is operating in a healthy mode, and in any other case, it is of great importance to detect the fault as soon as possible to prevent the further ruin of the major system. Regarding this, a sub-branch method of the Wavelet Transform (WT) analysis, named Continuous Wavelet Transform (CWT), is utilized to observe the short-circuit fault in the stator coils. Thus, a novel simulator of the BLDC motor is developed by making an interconnection between ADAMS and MATLAB in which different electrical and mechanical components are included. Therefore, a close-to-reality model of the BLDC motor is achieved, leading to a more accurate evaluation of the proposed method. An energy-type feature will be suggested to characterize the fault happening. Through acquiring the normalized energy amount for one of the Wavelet Coefficient (WC) signals, obtained by the CWT, and comparing the energy with a predefined threshold amount of energy for that signal, it is feasible to detect the stator's flawed performance. By conducting different simulations, the proposed method will be validated.
Read full abstract