Abstract

The early detection of an inter-turn short circuit (ITSC) fault is extremely critical for permanent magnet synchronous motors (PMSMs) because it can lead to catastrophic consequences. In this study, a model-based transfer learning method is developed for ITSC fault detection. The contribution can be summarized as two points. First of all, a Bayesian-optimized residual dilated CNN model was proposed for the pre-training of the method. The dilated convolution is utilized to extend the receptive domain of the model, the residual architecture is employed to surmount the degradation problems, and the Bayesian optimization method is launched to address the hyperparameters tuning issues. Secondly, a transfer learning framework and strategy are presented to settle the new target domain datasets after the pre-training of the proposed model. Furthermore, motor fault experiments are carried out to validate the effectiveness of the proposed method. Comparison with seven other methods indicates the performance and advantage of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.