Amidst an unprecedented period of technological progress, incorporating digital platforms into diverse domains of existence has become indispensable, fundamentally altering the operational processes of governments, businesses, and individuals. Nevertheless, the swift process of digitization has concurrently led to the emergence of cybercrime, which takes advantage of weaknesses in interconnected systems. The growing dependence of society on digital communication, commerce, and information sharing has led to the exploitation of these platforms by malicious actors for hacking, identity theft, ransomware, and phishing attacks. With the growing dependence of organizations, businesses, and individuals on digital platforms for information exchange, commerce, and communication, malicious actors have identified the susceptibilities present in these systems and have begun to exploit them. This study examines 28 research papers focusing on intrusion detection systems (IDS), and phishing detection in particular, and how quickly responses and detections in cybersecurity may be made. We investigate various approaches and quantitative measurements to comprehend the link between reaction time and detection time and emphasize the necessity of minimizing both for improved cybersecurity. The research focuses on reducing detection and reaction times, especially for phishing attempts, to improve cybersecurity. In smart grids and automobile control networks, faster attack detection is important, and machine learning can help. It also stresses the necessity to improve protocols to address increasing cyber risks while maintaining scalability, interoperability, and resilience. Although machine-learning-based techniques have the potential for detection precision and reaction speed, obstacles still need to be addressed to attain real-time capabilities and adjust to constantly changing threats. To create effective defensive mechanisms against cyberattacks, future research topics include investigating innovative methodologies, integrating real-time threat intelligence, and encouraging collaboration.
Read full abstract