Abstract
Forensic skills analysts play an imperative support to practice streaming data generated from the IoT networks. However, these sources pose size limitations that create traffic and increase big data assessment. The obtainable solutions have utilized cybercrime detection techniques based on regular pattern deviation. Here, a generalized model is devised considering the MapReduce as a backbone for detecting the cybercrime. The objective of this model is to present an automatic model, which using the misbehavior in IoT device can be manifested, and as a result the attacks exploiting the susceptibility can be exposed by newly devised automatic model. The simulation of IoT is done such that energy constraints are considered as basic part. The routing is done with fractional gravitational search algorithm to transmit the information amongst the nodes. Apart from this, the MapReduce is adapted for cybercrime detection and is done at base station (BS) considering deep neuro fuzzy network (DNFN) for identifying the malwares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Security and Privacy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.