Abstract Water system design problems are complex and difficult to optimise. It has been demonstrated that involving engineering expertise is required to tackle real-world problems. This paper presents two engineering inspired hybrid evolutionary algorithms (EAs) for the multi-objective design of water distribution networks. The heuristics are developed from traditional design approaches of practicing engineers and integrated into the mutation operator of a multi-objective EA. The first engineering inspired heuristic is designed to identify hydraulic bottlenecks within the network and eliminate them with a view to speeding up the algorithm's search to the feasible solution space. The second heuristic is based on the notion that pipe diameters smoothly transition from large, at the source, to small at the extremities of the network. The performance of the engineering inspired hybrid EAs is compared with Non-Dominated Sorting Genetic Algorithm II and assessed on three networks of varying complexity, two benchmarks and one real-world network. The experiments presented in this paper demonstrate that the incorporation of engineering expertise can improve EA performance, often producing superior solutions both in terms of mathematical optimality and also engineering feasibility.