The design of interdigital transducers (IDT) for active structural health monitoring (SHM) systems often requires a tuning of their characteristics for specific applications. IDTs are generally preferred for the selectivity of Lamb’s guided modes, but the directivity of the radiation pattern is a design parameter that is often difficult to customize for complex mechanical structures. This work proposes a comprehensive experimental study of the IDT with regular geometry, highlighting the dimensional parameters that can optimize the overall performance. From this study, a scaled electrode geometry emerged as a possible solution to shape the directivity diagram while maintaining the selectivity of the guided wave modes. This study based on FEM simulators led to a more versatile design of IDTs built with piezopolymer films of polyvinylidene fluoride (PVDF). The experimental validation showed the directivity diagrams and the ultrasonic guided mode selection were in very good agreement with the simulations. Another outcome of the investigation was the off axis propagation due to the contribution of the bus bars for connecting the IDT fingers to the excitation electronic circuit.
Read full abstract