Abstract

The ultrasonic transducers have numerous applications in industries, including medical probes for performing ultrasound scans. One of the significant drawbacks of the ultrasonic transducer is the wastage of a large portion of energy, due to high acoustic impedance, while transmitting ultrasonic waves to the target object. The present study is aimed to investigate the material design of the piezo-composite transducer and improve its performance. Different piezo-composite transducers were simulated in the COMSOL environment by varying input parameters, and three key performance indicators (KPI) were calculated. Many constraint-based multivariable optimization algorithms have been used to maximize the KPIs. A set of parameters, such as Sensitivity and Fractional Bandwidth, have been found to increase the performance of piezo-composite transducer model and its overall efficiency. This study is intended to impinge unidirectional property to the transducer which is found to be beneficial in more accurate medical as well as structural reports and cost savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.