This paper focuses on fractional-order modeling and the design of a robust speed controller for a nonlinear system. An induction motor (IM), widely used in Electrical Vehicles (EVs), is preferred in this study as a well-known nonlinear system. The major challenge in designing a robust speed controller for IM is the insufficiency of the machine model due to inherent machine dynamics. Fractional calculus is employed to model the IM using the small-signal method, accounting for model uncertainties. In this context, experimental data is approximated using a fractional-order small-signal transfer function. Consequently, a mixed sensitivity problem is formulated with fractional-order weighting functions. The primary advantage of these weighting functions is their greater flexibility in solving the mixed sensitivity problem by involving more coefficients. Hereby, three robust speed controllers are designed using the PID toolkit of the Matlab program and solving the H∞ mixed sensitivity problem, respectively. The novelty and contribution of the proposed method lie in maintaining the closed-loop response within a secure margin determined by fractional weighting functions while addressing the controller design. After evaluating the robust speed controllers with Bode diagrams, it is proven that all the designed controllers meet the desired nominal performance and robustness criteria. Subsequently, real-time implementations of the designed controllers are performed using the dsPIC microcontroller unit. Experimental results confirm that the designed H∞-based fractional-order proportional-integral-derivative (FOPID) controller performs well in terms of tracking dynamics, exhibits robustness against load disturbances, and effectively suppresses sensor noise compared to the robust PID and fixed-structured H∞ controller.
Read full abstract