Abstract

Relative degree (RD) approach is a powerful tool for obtaining system's input-output dynamics used for output tracking controller designs of minimum phase systems. Designs using the RD alone can fail due both to insufficient control authority in minimum phase systems, and instability of internal/zero dynamics attributed to nonminimum phase systems. A novel definition and a concept of Practical Generalized RD (PGRD) are proposed in this paper and are used in concert with Sliding Mode Control (SMC) to compensate for system perturbations in minimum phase systems. The use of known Generalized Relative Degree (GRD) in nonminimum phase systems allows for the elimination of internal dynamics. However, instability that emerges in the corresponding control dynamic extension is defeating any output tracking controller design. A novel methodology of using GRD for designing continuous SMC in nonminimum phase systems is presented. An algorithm for generating a bounded solution of the unstable dynamic extension is proposed and used in concert with SMC, allowing robust control design for nonminimum phase systems. The efficacy of the proposed GRD-based approaches is demonstrated on a minimum and nonminimum phase rocket attitude control problem both analytically and via simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.