Background: The application of hydrogen-powered vehicles is increasingly widespread, however, the hydrogen-filling process can be dangerous, to ensure both safety and efficiency. A new robotic hydrogen-filling system whose consisting of a hybrid robot combined with an automatic guided vehicle and robotic arm is designed. Methods: An analysis of functional composition of the system was performed, and the hardware scheme was designed. A dual-differential drive AGV and an end effector including a holding jaw and a sucker were designed. According to the system workflow, the control system is divided into four modules. A path planning simulation considering obstacle avoidance is carried out based on improved artificial potential field method and a trajectory planning of the operating arm is completed using source code written in MATLAB. Results: The simulation results show that the automatic guided vehicle can avoid obstacles and move to the specified position. The planed trajectory for robotic arm has certain smoothness, which can be proved that the operating arm can complete the process of grasping the hydrogenation gun. Conclusions: The robotic hydrogen-filling system can replace human beings in most of the work of the hydrogen-filling process, which provides a theoretical basis for automatic hydrogen refueling station.
Read full abstract