<p><strong>Objective:</strong> A new wearable upper limb rehabilitation robot is designed to address the disadvantages of the current desktop upper limb rehabilitation robot, which is bulky and inconvenient to move, and the rationality of the design is verified through the analysis of its motion characteristics and the calculation of joint moments. <strong>Methods:</strong> Firstly, according to the principle of modular design, the overall structure was designed. Secondly, the SOILDWORKS is used for three-dimensional modeling, and the SOILDWORKS Motion is used to simulate the elbow flexion/extension movement, shoulder flexion/extension movement and shoulder-elbow joint linkage movement of the robot. Finally, the dynamic equation of the system is established based on Lagrange method, and the change curve of the joint torque of the manipulator is calculated by MATLAB software. <strong>Results:</strong> The simulation results confirmed that the motion simulation curves of shoulder joint, elbow joint and wrist joint were smooth. The dynamic analysis confirmed that the joint torque variation curve was smooth and the maximum joint torque was less than the rated torque of the motor after deceleration. <strong>Conclusion:</strong> The design of wearable upper limb rehabilitation robot is reasonable, which lays a theoretical foundation for the subsequent research on upper limb rehabilitation robot.</p>
Read full abstract