Abstract

A new design of gait rehabilitation robot with cable-suspended configuration is proposed. Due to the under-constrained nature, it enables reducing the constraint feeling of patients. Cables are attached to cuffs mounted on the leg. A detailed mechanical design is presented and a kinematics model is developed. Dimensional synthesis is performed in two steps. First, the cable disposition should be determined within a range to maintain cable-suspended configuration using the minimum 2-norm solution of tensions. Second, the optimal cable disposition is achieved with the Root Mean Square of tension solutions. Gait rehabilitation robots with three or four cables are discussed and compared to determine dimensional parameters in terms of the locations of pulleys. A simulation model with ADAMS software is presented and the cable module is utilized to imitate the cable-driven system in real. Tension distribution is obtained from the simulation model, which is employed in comparison with the calculated values. The simulation results demonstrate the effectiveness of the presented method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.