BackgroundLower respiratory tract infections (LRTIs) are among the most frequent infections and a significant contributor to inappropriate antibiotic prescription. Currently, no single diagnostic tool can reliably identify bacterial pneumonia. We thus evaluate a multimodal approach based on a clinical score, lung ultrasound (LUS), and the inflammatory biomarker, procalcitonin (PCT) to guide prescription of antibiotics. LUS outperforms chest X-ray in the identification of pneumonia, while PCT is known to be elevated in bacterial and/or severe infections. We propose a trial to test their synergistic potential in reducing antibiotic prescription while preserving patient safety in emergency departments (ED).MethodsThe PLUS-IS-LESS study is a pragmatic, stepped-wedge cluster-randomized, clinical trial conducted in 10 Swiss EDs. It assesses the PLUS algorithm, which combines a clinical prediction score, LUS, PCT, and a clinical severity score to guide antibiotics among adults with LRTIs, compared with usual care. The co-primary endpoints are the proportion of patients prescribed antibiotics and the proportion of patients with clinical failure by day 28. Secondary endpoints include measurement of change in quality of life, length of hospital stay, antibiotic-related side effects, barriers and facilitators to the implementation of the algorithm, cost-effectiveness of the intervention, and identification of patterns of pneumonia in LUS using machine learning.DiscussionThe PLUS algorithm aims to optimize prescription of antibiotics through improved diagnostic performance and maximization of physician adherence, while ensuring safety. It is based on previously validated tests and does therefore not expose participants to unforeseeable risks. Cluster randomization prevents cross-contamination between study groups, as physicians are not exposed to the intervention during or before the control period. The stepped-wedge implementation of the intervention allows effect calculation from both between- and within-cluster comparisons, which enhances statistical power and allows smaller sample size than a parallel cluster design. Moreover, it enables the training of all centers for the intervention, simplifying implementation if the results prove successful.The PLUS algorithm has the potential to improve the identification of LRTIs that would benefit from antibiotics. When scaled, the expected reduction in the proportion of antibiotics prescribed has the potential to not only decrease side effects and costs but also mitigate antibiotic resistance.Trial registrationThis study was registered on July 19, 2022, on the ClinicalTrials.gov registry using reference number: NCT05463406.Trial statusRecruitment started on December 5, 2022, and will be completed on November 3, 2024. Current protocol version is version 3.0, dated April 3, 2023.
Read full abstract