Abstract

Knowing the predictive factors of the variation in a center-level continuous outcome of interest is valuable in the design and analysis of parallel-arm cluster randomized trials. The symbolic two-step method for sample size planning that we present incorporates this knowledge while simultaneously accounting for patient-level characteristics. Our approach is illustrated through application to cluster randomized trials in cancer care delivery research. The required number of centers (clusters) depends on the between- and within-center variance; the within-center variance is a function of estimates obtained by regressing the log within-center variance on predictive factors. Obtaining accurate estimates of the components needed to characterize the within-center variation is challenging. Using our previously derived sample size formula, our objective in the current research is to directly account for the imprecision in these estimates, using a Bayesian approach, to safeguard against designing an underpowered study when using the symbolic two-step method. Using estimates of the required components, including the number of centers that contribute to those estimates, we make formal allowance for the imprecision in these estimates on which a sample size will be based. The mean of the distribution for power is consistently smaller than the single point estimate that the sample size formula yields. The reduction in power is more pronounced in the presence of increased uncertainty about the estimates with the reduction becoming more attenuated with increased numbers of centers that contribute to the estimates. Accounting for imprecision in the estimates of the components required for sample size estimation using the symbolic two-step method in the design of a cluster randomized trial yields conservative estimates of power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call