Polyimide (PI) has been recognized as a potential organic cathode for Li-ion batteries (LIBs) due to its programmable structural design, high theoretical capacity, and resource availability. However, the poor intrinsic electrical conductivity of PI means that PI-based cathodes of LIBs have inefficient energy storage performance, especially at high current densities. In this work, the molecular structure of PI is optimized to obtain a layer-stacked crystalline PI with significantly enhanced dipoles, denoted NT-B for the first time. The dipoles in this PI are induced by the electronegative carbonyl groups from the monomer biuret and further enhanced via a π-π layer stacking effect. This work is the first to verify that the co-directional dipole enhancement effect of biuret is surprisingly different from that of monomer urea. A series of ex-situ/in-situ and theoretical DFT simulations are carried out to understand the functional mechanism of such effects. The multiple enhancement effects of the dipoles synergistically promoting the generation of a strong built-in electric field (BIEF) within NT-B are proposed based on the results obtained. It is confirmed that this BIEF plays a significant role in accelerating electron transport, which enhances the electrochemical activity of LIB cathodes. This work provides a new idea for the structural design of high-performance PI cathodes for LIBs.
Read full abstract