We derived equations and closed-form solutions of transit time for a viscous droplet squeezing through a small circular pore with a finite length at microscale under constant pressures. Our analyses were motivated by the vital processes of biological cells squeezing through small pores in blood vessels and sinusoids and droplets squeezing through pores in microfluidics. First, we derived ordinary differential equations (ODEs) of a droplet squeezing through a circular pore by combining Sampson flow, Poiseuille flow, and Young–Laplace equations and took into account the lubrication layer between the droplet and the pore wall. Second, for droplets wetting the wall with small surface tension, we derived the closed-form solutions of transit time. For droplets with finite surface tension, we solved the original ODEs numerically to predict the transit time. After validations against experiments and finite element simulations, we studied the effects of pressure, viscosity, pore/droplet dimensions, and surface tension on the transit time. We found that the transit time is inversely linearly proportional to pressure when the surface tension is low compared to the critical surface tension for preventing the droplet to pass and becomes nonlinear when it approaches the critical tension. Remarkably, we showed that when a fixed percentage of surface tension to critical tension is applied, the transit time is always inversely linearly proportional to pressure, and the dependence of transit time on surface tension is nonmonotonic. Our results provided a quick way of quantitative calculations of transit time for designing droplet microfluidics and understanding cells passing through constrictions.