Abstract

The Coronal Mass Ejection (CME) is an eruptive event in which magnetic plasma is ejected from the Sun into space through the solar corona. We considered a set of 51 Interplanetary Coronal Mass Ejections (ICMEs) listed by Kim et al. (Solar Phys. 184:77, 2013) from Coordinated Data Analysis Workshop (CDAW, Gopalswamy et al. in Astrophys. J. 710:1111, 2010). Among the 51 events, 22 events are classified as Magnetic Clouds (MC) and 29 events are classified as Ejecta (EJ) where the MC and EJ are subsets of ICMEs. We have analyzed the physical properties of CMEs and ICMEs associated with MC and EJ, and correlated them with the CME’s transit time/arrival time from the Sun to the Earth. Main aims of the present study are to examine (a) dependence of transit time on the properties of CMEs and ICMEs, and (b) differences between MC and EJ. It is found that CME’s initial speed decides the transit time which is in support of the known results in literature. Apart from this, some important results from the present study are: (i) transit time predicted using an empirical relation obtained in the present work is found comparable with the observations (correlation coefficient=0.70). (ii) The transit time of MC and EJ-associated CMEs ranges from 20 to 120 hours and IP acceleration lies between −10 m/s2 to 5 m/s2. (iii) There are certain differences between MC and EJ such as: (a) Ejecta takes slightly more time to travel and only 30 % of them are accelerated in the interplanetary medium. Whereas, MC takes less time to travel and nearly 50 % of them are accelerated, (b) The correlations of IP acceleration and speed with transit time are higher for MC than that of EJ, (c) A weak relationship between the deflection and transit time is found for MC, but it is absent in the case of EJ and (d) Only EJ-type CMEs have wider range of direction parameter and acceleration. Further, we checked the solar wind speed as another parameter has any influence on CME acceleration and it shows that there is no clear dependence between the two parameters. While it is observed that the average acceleration of MC-associated CME is larger for lower direction parameter values ( 0.6).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.