In view of the serious harm and widespread pollution caused by deoxynivalenol (DON), it is crucial to quantify its presence in the food safety assessment process. Here, we designed a core-shell-satellite nano assembly structure as a probe, composed of an anisotropic AuNR@Ag core, an ultra-thin SiO2 layer and a high surface coverage AuNPs satellites, which showed outstanding SERS activity and high stability. Anti-DON antibodies were modified on the surface of the prepared core-shell-satellite nano-assembly structure as SERS immunoprobe for DON specific detection using SERS-based lateral flow immunoassay (LFIA) with the advantages of simplicity, rapidity, and high sensitivity. Under optimal conditions, the detection limit for detecting DON using the SERS-LFIA method was 0.053 fg/mL, and the linear detection ranged from 0.1 fg/mL to 1 μg/mL. The SERS-LFIA strips based on AuNR@Ag@SiO2-AuNP nanostructures demonstrated the great potential for quick quantitative DON detection, providing a reference for trace detection of highly toxin mycotoxins.
Read full abstract