Abstract

Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals. Therefore, the development of sensitive and efficient detection methods for DON is essential to guarantee food safety and human health. In this study, an enzyme cascade amplification-based immunoassay (ECAIA) using a dual-functional alkaline phosphatase-linked single-chain fragment variable fusion tracer (scFv-ALP) and MnO2 nanosheets was established for DON detection. The scFv-ALP effectively catalyzes the hydrolysis of ascorbyl-2-phosphate (AAP) to produce ascorbic acid (AA). This AA subsequently interacts with MnO2 nanosheets to initiate a redox reaction that results in the loss of oxidizing properties of MnO2. In the absence of ALP, MnO2 nanosheets can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to produce the blue oxidized product of TMB, which exhibits a signal at a wavelength of 650 nm for quantitative analysis. After optimization, the ECAIA had a limit of detection of 0.45 ng/mL and a linear range of 1.2-35.41 ng/mL. The ECAIA exhibited good accuracy in recovery experiments and high selectivity for DON. Moreover, the detection results of the actual corn samples correlated well with those from high-performance liquid chromatography. Overall, the proposed ECAIA based on the scFv-ALP and MnO2 nanosheets was demonstrated as a reliable tool for the detection of DON in corn samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call