Detecting anomalies in complex data is crucial for knowledge discovery and data mining across a wide range of applications. While density-based methods are effective for handling varying data densities and diverse distributions, they often struggle with accurately estimating densities in heterogeneous, uncertain data and capturing interdependencies among features in high-dimensional spaces. This paper proposes a fuzzy granule density-based anomaly detection algorithm (GDAD) for heterogeneous data. Specifically, GDAD first partitions high-dimensional attributes into subspaces based on their interdependencies and employs fuzzy information granules to represent data. The core of the method is the definition of fuzzy granule density, which leverages local neighborhood information alongside global density patterns and effectively characterizes anomalies in data. Each object is then assigned a fuzzy granule density-based anomaly factor, reflecting its likelihood of being anomalous. Through extensive experimentation on various real-world datasets, GDAD has demonstrated superior performance, matching or surpassing existing state-of-the-art methods. GDAD's integration of granular computing with density estimation provides a practical framework for anomaly detection in high-dimensional heterogeneous data.
Read full abstract