Soil organisms are impacted by a wide range of physical and chemical disturbances in intensive cropping systems. The development of cropping systems less disturbing to soil biodiversity requires to understand the consequences of various practices on soil organisms. However, most studies characterize the effects of cropping systems by distinguishing between the main types of systems (i.e. conventional, organic, conservation) without taking into account the diversity of applied practices. In this study, we aimed to describe cropping systems and their effects on soil mesofauna using indicators of practice intensity previously developed by agronomists. Mesofauna sampling was conducted in autumn 2020 and 2021 over 21 fields under conventional, conservation or organic systems, either long-established (≥ 7 years) or in transition (≤ 3 years). Primary indicators and composite indexes were computed to determine the intensity of tillage, pesticide treatments and organic inputs, and used as predictors for mesofauna density and Collembola species diversity. In 2020, mesofauna density was lower in organic than in conventional systems, and both did not differ significantly from conservation systems. In 2021, Collembola density tended to be the highest in long-established conservation systems. Transitioning organic systems had a low mesofauna density. Using composite indexes, mesofauna density and Collembola diversity were observed to decrease under high tillage and low pesticide treatment intensity, while we found no clear effect using the organic input intensity index. Overall, practice intensity indicators and indexes were useful to explain the effects of cropping systems on soil mesofauna density and diversity. In particular, the tillage intensity index showed a major impact of tillage on soil mesofauna. However, the significance of the effects of practice intensity on mesofauna varied between years. Future studies are thus necessary to fully assess the relevance of intensity indicators and indexes in assessing the effects of cropping systems on soil biodiversity.
Read full abstract