AbstractBond dissociation enthalpies (BDEs) play a significant role in the photolysis of Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), which lead to the depletion of stratospheric ozone. In this work, we estimate the performance of Density Functional Theory (DFT) methods in calculating BDEs of CFCs and HCFCs, and find that DFTs are unreliable for this system. The reasons for the unreliability of DFT methods in this system are also concluded. Furthermore, composite ab initio methods G3 and G3B3 are demonstrated to accurately estimate BDEs of polyhalogenated lower alkanes. Eighty two experimental values from Comprehensive Handbook of Chemical Bond Energies (2007, 2nd edition) are re‐evaluated. Eight of them are doubted as having a deviation exceeding 20.0 kJ/mol between the theoretical and experimental values. We also systematically predict the BDEs in polyhalogenated methanes and ethanes. A further study is conducted on their relationships of structures and properties. Copyright © 2010 John Wiley & Sons, Ltd.
Read full abstract