This paper focused on the characterization of the composites containing nickel aluminate spinel from Al2O3/NiO and Al2O3/Ni systems. The composites were prepared by die pressing of powders and subsequent sintering of green bodies in air atmosphere. Composites were characterized by XRD, SEM, EDS and DTA/TG/MS analyses. The physical properties of the composites were measured by Archimedes method. Quantitative description of the composites microstructure was made on the basis of SEM images using computer image analysis. The XRD studies and SEM observations of composites confirmed the presence of two phases Al2O3 and NiAl2O4 in the whole volume of samples from both systems. Spinel phase was evenly distributed throughout the volume of the material. Morphology of NiAl2O4 obtained from both systems was characterized by the presence of voids. The DTA/TG/MS measurements showed the characteristics of organic binder decomposition and type of gases released to the atmosphere during thermal treatment. Moreover, the DTA/TG analysis showed the temperature of spinel-phase formation for both systems. It was found that the spinel-phase NiAl2O4 formation retards the process of densification. Therefore, it can be concluded that densification of samples with spinel phase depends mainly on the volume of spinel phase in composite material and does not depend on the substrates used to prepare spinel phase. The values of the selected properties of Al2O3–Ni- and Al2O3–NiO-based materials confirmed that the physical properties depend on the type of substrates used in the fabrication of composites. The type of powder influences the open porosity of samples. For composites produced using NiO powder, open porosity is lower than for samples formed with nickel powder.
Read full abstract