SUMMARYİstanbul (Marmara Region, NW Turkey) is one of the megacities in the world and suffered from destructive earthquakes on the North Anatolian Fault, a member of the North Anatolian Shear Zone, throughout history. The 1999 Kocaeli and Düzce earthquakes emphasize the earthquake potential of the fault, crossing the Sea of Marmara, and the importance of seismic hazards in the region. The studies in the last 20 yr have concentrated on the main fault and its future destructive earthquake potential. In this study, unlike the previous ones, we focus on the two main topics about the earthquakes not interested previously in İstanbul: (1) Investigating recent earthquake activity masked by the blasts in the metropolitan area and its tectonic implications, (2) revealing their effects in İstanbul utilizing numerical ground motion simulations for a future moderate event (Mw 5). First, the 386 earthquakes from 2006 to 2016 are relocated with the double-difference method using the dense seismic network operated in the same period. The source mechanisms of the events (ML ≥ 3), including the most recent 2021 Kartal–İstanbul earthquake (ML 4.1), are determined. In addition to the analysis of the recent seismic activity, the location of the two moderate and pre-instrumental-period İstanbul earthquakes, which occurred in 1923 (Mw 5.5) and 1929 (Mw 5.1), are revised. Using the relocated epicentres outside of the principal deformation zone and the fault plane solutions, the roles of the earthquakes in the stress regime of the Marmara region are explained. The epicentres on the Cenozoic or Palaeozoic formation in the Istanbul–Zonguldak Zone are interpreted as the re-activation of the palaeo-structures under the recent tectonic stresses, and their fault plane solutions agree with the synthetic/antithetic shears of a transtensional regime corresponding to the right lateral strike-slip system with mainly N–S extension in the Marmara Region. In the second part, we investigate the effects of moderate scenario events (Mw 5) considering the current earthquake epicentres in the İstanbul metropolitan area, using characterized earthquake source model and 1-D velocity structure verified with the broad-band (0.1–10 Hz) numerical ground motion simulation of the 2021 Kartal–İstanbul earthquake. The simulated PGAs agree with the ground-motion prediction equations for short epicentral distances (<30 km). Furthermore, according to the empirical relation for Turkish earthquakes, the maximum PGA value of the synthetic models (∼0.3 g) corresponds to the felt intensity of MMI IX. The simulated spectral accelerations for the Mw 5 earthquake scenarios may exceed the design spectrum between 0.2 and 0.6 s given in the Turkish Building Earthquake Code (2018). In addition, certain models also generate spectral accelerations close to the design-level spectrum between 0.4 and 1 s, leading to resonance phenomena. The results indicate that a moderate event (Mw 5) in the İstanbul metropolitan area is capable of damage potential for the mid-rise buildings (4–10 stories) because of the site condition with resonance phenomena and poor construction quality.
Read full abstract