Abstract
The earthquake hazard associated with the Main Himalayan Thrust (MHT) is a critical issue for India and its neighbouring countries in the north. We used data from a dense seismic network in Uttarakhand, India, to model the lateral variations in the depths of MHT (2–6% drop in Vs at 12–21 km depths), Moho (a sharp increase in Vs (by ~ 0.5–0.7 km/s) at 39–50 km depths) and lithosphere (a marked decrease in Vs(~ 1–3%) at 136–178 km depths), across the Himalayan collisional front. Our joint inversion of radial PRFs and group velocity dispersion data of Rayleigh waves detects three NNE trending transverse lithospheric blocks segmenting the lithosphere in Uttarakhand Himalaya, which spatially correlate well with the northward extension of the Delhi -Haridwar Indian basement ridge, an inferred tectonic boundary and great boundary fault, respectively. Our radial receiver function imaging detects highly deformed and segmented crustal and lithospheric structures associated with three mapped transverse lithospheric blocks, suggesting a reduction in rupture lengths of future earthquakes, thereby, reducing earthquake hazards in Uttarakhand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.