Glycerol, an abundant by-product of biodiesel production, represented a promising carbon source for enhancing nutrient removal from low C/N ratio wastewater. This study discovered a novel approach to initiate glycerol-driven denitrifying phosphorus removal (DPR) in situ by creating a short-term microaerobic environment within the aerobic zone. This approach facilitated the in-situ conversion of glycerol, which was subsequently utilized by denitrifying phosphate accumulating organisms (DPAOs) for DPR. The feasibility and stability of glycerol-driven DPR were validated in a continuous-flow pilot-scale reactor. Anaerobic phosphorus release increased from 1.0 mg/L/h to 2.5 mg/L/h, with fermentation bacteria and related functional genes showing significant increases. The stable stage exhibited 92.8% phosphorus removal efficiency and 55.5% DPR percentage. The microaerobic environment enhanced fermentation bacteria enrichment, crucial for glycerol-driven DPR stability. The collaborative interaction between fermentation bacteria and phosphate accumulating organisms (PAOs) played a key role in sustaining glycerol-driven DPR stability. These findings provide a robust theoretical foundation for applying glycerol-driven DPR in established wastewater treatment plants.
Read full abstract