Abstract

An alternatively anaerobic–aerobic biofilm system was operated for treating synthetic municipal wastewater for 150 days, and the effect of ammonium concentration in range of 15 mg∙L−1 - 50 mg∙L−1 on the phosphorus recovery performance was discussed. The ammonium concentration was confirmed as an important factor for balancing phosphorus accumulating organisms (PAOs) and denitrifying phosphorus-accumulating organisms (DPAOs) to affect nutrients removal and phosphorus recovery. The PAOs dominated in phosphorus removal with the ammonium less than 30 mg∙L−1, the ortho-P concentration in recovery steam was plateaued at 52 mg∙L−1. The increase in ammonium to 40 mg∙L−1 caused the seriously deterioration in PAOs activity; however, the phosphorus removal and recovery performance was decreased slightly which attributed to the vital contribution of DPAOs in phosphorus removal. The adverse effect of ammonium can be eliminated by decreasing the volume exchange ratio (VER) from 3.0 to 1.5, leading to the phosphorus concentration in recovery steam of 72.21 mg∙L−1. Meanwhile, the phosphorus removal efficiency (PRE) and total nitrogen removal efficiency (NRE) were stable at 97.8 % and 99.2 %, respectively, indicating highly efficient phosphorus recovery and nutrients removal in the biofilm system. The outcome of the present study could facilitate the establishment of an integrative technology to realize in-site carbon utilization, highly efficient nutrients removal and phosphorus recovery simultaneously in the mainstream treatment of sewage wastewater, and the study reveals the transformation pathways of P and N in the BPRR system, as well as the complex interactions between functional microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.