Abstract

The performance and mechanism of the glycerol-driven denitrifying phosphorus removal (DPR) process were investigated in low organic matter wastewater treatment using the modified anaerobic-anoxic–oxic (MAAO) system. The results revealed that denitrifying bacteria preferentially utilized glycerol, reducing nitrate interference on anaerobic phosphate release. Fermentation bacteria converted excess glycerol into available carbon sources, which were utilized by denitrifying phosphorus-accumulating organisms (DPAOs). Optimize glycerol dosage (calculated in chemical oxygen demand) could be estimated based on 6 times the effluent NO3−-N of the anoxic zone. As glycerol dosage increased, the relative abundance of fermentation bacteria surged from 8.2% to 17.7%, subsequently boosting the DPR rate from 34.6% to 77.2%. Notably, denitrifying glycogen-accumulating organisms (DGAOs) decreased from 0.5% to 0.2% but remained instrumental in nitrogen removal. The collaborative actions of fermentation bacteria, DPAOs, and DGAOs were vital in upholding the stability of nutrient removal in the glycerol-driven DPR process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call